<div>
(colby2152 @ Nov. 08 2007,14:43)</div><div id="QUOTEHEAD">QUOTE</div><div id="QUOTE">
REF: Lyle McDonald
<div></div><div id="QUOTEHEAD">QUOTE</div><div id="QUOTE"> So, when you diet, the fatter you are, the less LBM (and more fat) you will lose. Conversely, the leaner you are, the more LBM and less fat you will tend to lose when you diet. This makes sense in evolutionary terms, the more fat you have to lose, the more your body can lose without having to burn off muscle tissue; the leaner you get, the less fat you have and the more muscle you end up losing. Anyone who’s dieted naturally to sub 10% body fat levels knows this to be true: the leaner you get, the more muscle mass you tend to lose
So what about overfeeding and gaining weight? Well, in general, the same holds but in reverse: leaner individuals will tend to gain more LBM and less fat and fatter individuals will tend to gain more fat and less LBM. This actually makes sense when you think about it. The fat individual loses a lot of fat/a little LBM when they diet and gains a lot of fat and little LBM when they overfeed while the leaner individual does the opposite. P-ratio appears to be constant going in both directions. That is, P-ratio appears to be constant for a given individual (5).
So, typically, when overfed, thin/lean individual will gain 60-70% lean body mass (LBM) while fat individuals may gain only 30-40% LBM. Note that these percentage gains are without exercise, simply with overfeeding from a starting body fat level. Although research hasn’t examined overfeeding nearly as much as underfeeding, we might expect intensive weight training to skew these numbers to an even better point.</div>
More reasoning to show that if a slow bulk does indeed work for an individual, than they should practice this caloric intake at a lower body fat percentage.</div>
here is the rest of that piece by lyle, originally from his news-letter.
Feature Article - Initial Bodyfat and Body Composition Changes Part 1
For many years (decades?) a common suggestion was that one should attempt to gain some muscle mass mass (through resistance training and possibly overeating) prior to beginning a diet. Well meaning individuals would suggest you spent 3-4 weeks or more training hard and eating well to gain muscle mass. The goal was to raise metabolism so that the diet would go more effectively.
In that current data indicates that each pound of muscle might burn an additional 6 calories (as opposed to older values of 25-40 cal/lb or even higher) (1), this argument is no longer tenable; to significantly affect metabolic rate would require a monstrous gain of muscle mass, far more than you could gain in 3-4 weeks.
Even if you gained 10 pounds of muscle, that would only add up to an additional 60 calories burned per day, hardly enough to worry about and certainly not enough to affect the following diet. Which isn't to say that diets don't work better after short or even medium periods of overfeeding, mind you, it's simply not because of gains in muscle mass.
A more recent idea making the rounds in bodybuilding nutrition is that, prior to trying to gain lean body mass, people should diet down first. This reasoning is based on a variety of data that has examined the changes in body composition that occur when you overfeed either thin or fat individuals (see for example, reference 2 or just about anything Gilbert Forbes has written).
A primer on the P-ratio
The above recommendation is based on a lot of data on something called the P-ratio (which stands for partitioning ratio) which essentially represents the proportion of protein (LBM) you gain relative to the total weight you gain (this isn't the technical definition of P-ratio, by the way, I'm just trying to simplify it a bit).
Now, a lot of factors control P-ratio including genetics, hormones, diet and training (to a smaller degree than you'd expect) and probably some I'm forgetting (3). But by and large, the primary predictor of P-ratio is starting body fat percentage. Basically, your starting body fat percentage predicts the great majority of what you will lose/gain when you diet/overfeed (4).
So, when you diet, the fatter you are, the less LBM (and more fat) you will lose. Conversely, the leaner you are, the more LBM and less fat you will tend to lose when you diet. This makes sense in evolutionary terms, the more fat you have to lose, the more your body can lose without having to burn off muscle tissue; the leaner you get, the less fat you have and the more muscle you end up losing. Anyone who's dieted naturally to sub 10% body fat levels knows this to be true: the leaner you get, the more muscle mass you tend to lose
So what about overfeeding and gaining weight? Well, in general, the same holds but in reverse: leaner individuals will tend to gain more LBM and less fat and fatter individuals will tend to gain more fat and less LBM. This actually makes sense when you think about it. The fat individual loses a lot of fat/a little LBM when they diet and gains a lot of fat and little LBM when they overfeed while the leaner individual does the opposite. P-ratio appears to be constant going in both directions. That is, P-ratio appears to be constant for a given individual (5).
So, typically, when overfed, thin/lean individual will gain 60-70% lean body mass (LBM) while fat individuals may gain only 30-40% LBM. Note that these percentage gains are without exercise, simply with overfeeding from a starting body fat level. Although research hasn't examined overfeeding nearly as much as underfeeding, we might expect intensive weight training to skew these numbers to an even better point.
So far, so good right; it sure seems like the leaner you are, the better your body composition changes will be during overfeeding? So get lean and then train and eat and you should gain piles of muscle back, right?
The problem: naturally lean people vs. dieted down people
The problem with the above analysis, exciting as it sounds, is that there are significant differences between folks who are naturally lean (on whom the original overfeeding research was done) and subjects who have been dieted to leanness.
Let's consider, for a second the likely physiology of those folks who stay naturally lean. Based on the Geneticcs Hypothesis (3), we'd expect them to have pretty good hormonal status in terms of thyroid levels, low or normal cortisol, maybe decent levels of testosterone, GH and IGF-1. They probably also show a normal nervous system output and an ability to increase fat oxidation when calories are raised as well.
We'd probably expect them to exhibit a spendthrift metabolism (6), one that cranks up in response to overfeeding to burn off excess calories. It wouldn't be surprising if they were the ones who showed a great deal of Non-Exercise Activity Thermogenesis (NEAT, 7) which is what allows them to burn off excess calories without getting fat. All of this, almost certainly with other factors would all contribute to their general lack of fat gain during overfeeding. Of course, if fat gain is limited during overfeeding, that would tend to mean that any weight gain will tend to be LBM, as the P-ratio data described above indicates.
The problem is that the above physiological profile in no way describes individuals who have dieted down to a low body fat percentage. Rather, dieted individuals typically show a biology that is absolutely not geared towards anything except packing the body fat back on. Typically, the metabolic consequences of dieting include a lowered metabolism, decreased fat oxidation, decreased HSL activity, increased LPL activity impaired hormonal status (including lowered testosterone and raised cortisol), decreased thermogenesis from a reduction in both thyroid levels and nervous system output and a host of other metabolic defects. All of these serve to both slow fat loss during the diet and ensure rapid fat regain when food is reintroduced.
For example, in the classic starvation study (the Minnesota Semi-Starvation study) men were dieted for 6 solid months reaching 4-5% body fat at the end of the study. Then they were refed and body composition was tracked. By the theory being advocated, they should have gained lots of LBM and little fat during refeeding, they were clearly super lean to start out with. But this is absolutely not what happened.
As would be expected based on the metabolic adaptations to dieting, their bodies were mainly primed to replenish fat stores. Reductions in metabolic rate, fat oxidation and thermogenesis all contributed to a preferential gain of body fat and these systems didn't reset themselves until all of the body fat lost had been regained (8). Quite in fact, signals from body fat (i.e. leptin and the rest) are the mechanism behind this physiology (9).
The bottom line is that, in dieted down individuals, the body is primed to gain body fat at the expense of LBM to replenish what was lost during the diet. Again, this is fundamentally different than looking at genetically lean individuals (for whom a low body fat percentage is their normal level) in terms of what happens when they are overfed.
And even without this research available, anybody who's dieted to a low body fat percentage can attest to the above. Regardless of the theories being advocated by the individuals looking just at Forbes' data on P-ratio, the end of the diet is a time when you gain body fat the most easily. Even a brief look at the real world should have pointed out why the theory was incorrect in the first place.
the end
colby
imo, doesnt really discount the benefits of a "slow bulk" approach following a diet (cut), if anything it reinforces them but....................it does clarify the huge diff. between naturally lean folks who start bulking (especially when lifting and really especially when lifting for the 1st time) and folks who diet down to a lean state. dieting down from 15-18% all the way to say 8-10% and then expecting to reap the same minimum 60-70%lbm gains that nat. lean 1st timers enjoy may result in an unpleasant surprise. then again, who knows, as mentioned, much of it is based on your own personal p-ratio (if you believe such stuff that is) and if yours happens to be good then that will shine thru as you come back up. provided of course you dont shift gears immed from cutting to serious bulking.
as far as this opening from your other post..........
It (Lyle's Ch.4 excerpt from his Ultimate Diet 2.0 book) is a pretty good read, but if you truly agree with what he says, then a lot of what we say about bulking and cutting in general is meaningless. If the p-ratio is essentially the same whenever we cut or bulk, then all muscle gained in a bulk would be lost in the cut. I don't believe this, nor does anyone here.
...........i would have to disagree.
if lyle (and others)hung all muscle gains and losses on p-ratio then there would be no point for the diet book, now would there. he would have simply devised a simple way to determine your ratio and then marketed a diet/workout for those who had good ones. keep in mind the book is designed for folks who are typically poor gainers and losers of wgt which typically translates into those with insuline sensitivity issues as well as poor p-ratios (most likely). i believe he even mentions in the book if you were joe avg who didnt have these issues then aside from contest prep perhaps you wouldnt need to search out answers to questions like "when i gain, why is it mostly fat?" "when i diet, why dont i keep some of the muscle i gained...i just seem to go back to skinny?"
from the article i believe he posted the p-ratio aspect that is controlled by genetics, hormones etc (and therefore out of our control minus drugs) at 80-85% which leaves @15-20% which we can effect.
the main point to me is not that you have no control over your gains but that you have less then many would have you think. planning to eat clean, slow bulk, lift heavy and freq., sleep well etc etc can all be steps in the right direction towards improving your muscle over fat gain for a bulk but like i mentioned before you are not going to go from having a 1lb muscle/2lbs fat gain ratio (normal eating standard bulk) to suddenly a 5lbs muscle/1lb fat ratio because of those changes.....despite what muscle and fitness and flex magazine tell everyone. you can improve your ratio but your not going to completely re-work it.
ok, that is by far the longest post ever for me so ill have to take a time out now.